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Abstract

The thermal response of a solid containing a periodic planar array of cracks is considered. Special emphasis is placed
on the extra phase lag of the thermal wave due to each crack when the solid is heated by a periodic point source. An
exact solution for this phase lag is obtained in the form of an integral that requires numerical evaluation. Additionally,
simpler asymptotic solutions are obtained for both low and high heating frequencies and their validity ranges are
determined through comparisons with the exact numerical results. Furthermore, comparisons are made with the pre-
diction of an equivalent solid model wherein the effective thermal conductivity perpendicular to the cracks is obtained
through a simple resistance summation procedure. It is demonstrated that the extra phase lag due to each crack reaches
a constant value (independent of location) at distances from the heat source that are greater than about five times the
crack spacing. In most cases, the variation in the phase lag with frequency and the thermal properties of both the solid
and the cracks is accurately described by the asymptotic solutions. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Photothermal techniques are used extensively for the
determination of the thermal properties of materials
[1-3]. In this context, an optical energy source such as a
laser is used to heat the material in a prescribed manner
(typically as a short duration pulse or as a continuous
modulated wave) and the temporal and spatial distribu-
tions of temperature are measured using any one of a
variety of measurement devices. An especially popular
version is the so-called laser flash method, wherein a high-
powered laser is used to produce a pulse over a large area
of the specimen surface and the time-dependent temper-
ature profile is then measured on the back-side of the
specimen by an infra-red camera. In comparison with the
flash method, it is possible to continuously modulate the
input flux over a large area of the specimen surface so that
a planar thermal wave is driven into the solid. On the
incident surface, both the magnitude of the wave and the
phase lag between the temperature and the flux, can be
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measured. Using these two measurements, in conjunction
with an analytical solution, it is possible to deduce the
unknown thermophysical properties of a layer that is
bonded onto a substrate of material having known
properties [3]. An alternate version involves the use of a
focused laser to produce a modulated heat source that
acts essentially at a point on the surface and measurement
of the phase lag of the temperature with respect to the
input heat at some other location on the surface, using
either a thermocouple or an infra-red sensor along with a
lock-in amplifier. The latter technique is preferred for
measuring material properties on a finer size scale,
making it particularly attractive for use with new devel-
opmental materials that are available only in limited sizes
or for probing local variations in properties due to mi-
crostructural heterogeneities. It has also proved to be
useful for measuring the thermal conductance of cracks
and interfaces [4-6]. Regardless of the details of the
measurement method, an analysis of the heat flow be-
havior is invariably required for the interpretation of the
measurements and the determination of the relevant
thermal properties.

The focus of the present paper is on the interaction of
a periodic thermal wave with an array of equally-spaced
planar cracks or interfaces in an otherwise homogeneous
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Nomenclature

a spacing between cracks

3 cell transition matrix (Eq. (17))

he thermal conductance across the
crack

k thermal conductivity of the pristine
material

k. conductivity in the z direction after
cracking (Eq. (2))

m* = iw/o real part of m is the penetration
depth (Eq. (10))

p=\/aw/2u dimensionless frequency
(Eq. (4))

T(r,z,t) temperature (Eq. (6))

T(n) temperature at z = na (Eq. (26))

Xe = ¢. — ¢, extra lag across cell according to
equivalent solid model (Eq. (5))

X(n) =¢,— ¢, extra lag across nth cell according
to exact solution (Eq. (28))

X =d¢— ¢ asymptotic limit for the extra lag as
n — oo (Eq. (32))

Xo= ¢, — ¢y extra lag predicted by the low
frequency model (Eq. (43))

Xi

Greek symbols

extra lag according to the non-in-
teracting model (Eq. (53))

a=k/pC, thermal diffusivity of the pristine
solid

o, thermal diffusivity of the cracked
solid (Eq. (55))

p Hankel transform parameter

y =/ B +m

€

(Eq. (11))
root of transformed heat equation

((12))

characteristic root of difference
equation ((38))

{,nand 0 elements of ¥ (Eq. (18))

wand p! the two eigenvalues of 4 (Eq. (20))

v=1+/n/0 parameter in " (Eq. (23))

p. = k/ah, dimensionless interface resistance
(Eq. (1))

¢ phase lag over a distance a in
cracked solid

o phase lag over a distance a in
pristine solid

o =2nf frequency of the source

solid. The objective is to calculate the phase lag that
occurs across each crack in terms of the thermal prop-
erties of the solid and the cracks, the frequency of
heating, and the position within the solid. The work is
motivated by concurrent experimental studies on the
thermal diffusivity of fiber-reinforced ceramic compos-
ites subject to tensile stressing [7]. Upon application of
stress along the fiber direction, these materials exhibit
multiple matrix cracks transverse to the loading direc-
tion, with each crack bridged by fibers. The cracks are
essentially planar in nature and their spacing decreases
with increasing applied stress. The goal here is to de-
velop the requisite theoretical analysis for the inter-
pretation of phase lag measurements made along the
loading axis (perpendicular to the cracks), allowing de-
termination of the thermal conductance of each of the
cracks. The analysis presented here is also applicable to
other materials systems containing multiple interfaces
such as multilayered structures found in electronic de-
vices. Although not explored explicitly in this paper, the
analysis can be further used to draw insights into the
thermal response of materials containing cracks with
finite lengths and with a distribution in orientations.

2. Preliminaries and objectives

The composite in its “pristine”” uncracked condition
has thermal properties that are assumed to be isotropic

with thermal conductivity k. The application of stress
generates multiple cracks, each of which is perpendicular
to the tensile axis, so that from a macroscopic viewpoint
the solid is rendered anisotropic. In the analysis, it is
convenient to use a cylindrical coordinate system (r,z)
with the z axis perpendicular to the cracks and a periodic
point source acts at the origin as shown in Fig. 1(a). The
first unit cell is shown in Fig. 1(b) and is configured so
that the crack is located at the midpoint of the cell; the
crack has a thermal conductance /.. The resistance per
area of the crack is equal to 1/4, and the resistance of
the solid is a/k. The dimensionless quantity

ok
" ah,

Pe (1)
represents the ratio of the thermal resistance of the crack
to that of the solid, and p, is the reciprocal of the Biot
number. The heat flow ¢ across the crack is continuous.
In contrast, there is a temperature discontinuity AT
across the crack that is given by AT = ¢/h..

2.1. Equivalent anisotropic solid

For one-dimensional flow in the z direction the ef-
fective thermal conductivity k. is somewhat reduced and
is given by

k
k= 2
ol vy )
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Fig. 1. (a) Idealized model of the composite after application of uniaxial stress in the z direction. The crack spacing is equal to “a’” and
k 1s the effective conductivity in the z direction. The periodic point source acts at the origin. (b) The first unit cell 0 < z < a showing the
crack at z = a/2. The state transition matrix % relates {U(0), 7 (0)} to {U(a), V(a)}.

In contrast, the radial and tangential conductivities re-
main unchanged. Thus, the “equivalent” anisotropic
solid corresponding to the cracked composite has a
thermal conductivity tensor k;; given by

k0 0
0 0 k

This result for k;; is essentially based upon the method
described over a century ago by James Clerk Maxwell [8]
for finding the average properties of stratified material.
More recently [9,10], the same result for k; has been
obtained using non-standard analysis. In essence, the
result for k. corresponds to an electrical analogue series
circuit in which the thermal resistances are summed, i.e.,
for a unit area a/k, = a/k + 1/h.. Implicit in this circuit
is the assumption that the heat flow is constant.

The equivalent solid model can be used to estimate
the phase lag of a thermal wave when the heat is applied
in a periodic manner. To begin, consider a periodic point
source which is emitting heat in an infinite, pristine solid
at a frequency w = 2nf". After periodic steady conditions
are attained, the phase lag ¢, measured over the distance
a (the crack spacing), is given by [11]

(:bO =p; (4)

where p = a\/w/20 is dimensionless frequency and o is
the thermal diffusivity of the pristine material. After the
cracks have been introduced, the phase lag over the
same distance “a’” measured along the z axis is rep-
resented by ¢ and the extra lag X caused by the crack is
then given by X = ¢ — ¢,. The attenuation of heat flow
across the cell depends upon exp|[—p] and at sufficiently
low frequencies the attenuation is minimal. Under these
conditions the thermal behaviour approaches steady-
state and the overall microstructure acts as an equivalent
solid with an effective diffusivity o, = o/(1 + p,) in the z

direction. The phase lag ¢, of this equivalent solid is
¢. = ¢o+/1 + p., and the extra phase lag is

Xe= o=y = do{VT+p—1}, )

where the subscript “e” indicates the equivalent solid. In

this treatment, the discrete microstructural features of

the cell have been smoothed out and X, corresponds to
the phase lag as predicted by the homogeneous aniso-
tropic solid model.

The attenuation of heat across the cell becomes larger
as the frequency is increased and eventually the use of
the equivalent solid model becomes unacceptable. The
objectives of the present paper are to determine the
phase lag in a cracked solid over a wide frequency range
and to ascertain the limitations on the use of the
equivalent solid model. The course of the paper proceeds
as given below.

1. In Section 3, an exact analysis of the transient re-
sponse of a unit cell is presented. The state transition
matrix 4 which relates the thermal field across the cell
is found. These matrices are cascaded to find the ther-
mal response at any point within the solid. The tem-
perature along the z axis is found and the extra lag
across the cell (n — 1)a < z < na is designated X (n).
It is shown that:

(a) the extra lag X (n) across each cell approaches a
constant limit rather quickly, and for n > 5 the ex-
tra lag X (n) — X. Consequently, X is given special
attention;

(b) the extra lag X due to the crack initially in-
creases linearly with p, as given in (5) but eventu-
ally becomes non-linear and, for large values of p,
attains a maximum value.

2. In Section 4, a simplified model for the low frequency
response, p < 1, is given. As in the case of the exact
solution, the extra lag approaches an asymptotic
value which is designated X, where the ¢ indicates
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“low frequency.” At sufficiently low frequencies,
X, ~ X.. As p increases X, becomes non-linear and
the maximum attainable extra lag caused by a crack
is /2.

3. In Section 5, the thermal behaviour associated with
neglecting the secondary scattering is considered.
This simplification is reasonable either at high fre-
quency (p > 1), or if the scattering from each crack
is minimal so that p, < 1. The extra lag is designated
X; where the subscript indicates “independent” in the
sense that there is no interaction with the other cracks
in the array.

4. In Section 6, a map is given which shows the regime
of validity for each of the preceding models.

5. In Section 7, the application of the analysis, with the
aim of extracting the crack resistance p_, from exper-
imental measurements of phase lag and frequency is
presented.

6. Finally, some concluding remarks are made in
Section 8.

3. Thermal response at the periodic steady state

In this section, the exact solution for the thermal re-
sponse, caused by a point source operating at the steady
periodic state in an infinite cracked solid, is presented.
First, a single unit cell is considered, and the so-called
“cell transition matrix” [12,13], which relates the tem-
perature and flux across a single cell, is found. Secondly,
by cascading (multiplying) these matrices together, the
temperature is found at any point within the solid. Special
emphasis is placed on the temperature along the z axis.

3.1. Basic equations

The first unit cell is shown in Fig. 1(b). To construct
the cell transition matrix it is noted that on either side of
the crack the solid obeys the heat flow equation
@2T+18T+62T_16T (6)
o2 ror 02 oot
On the surface z =0 the laser beam is focused to a
vanishingly small spot of radius r, and the flux is equal
to the real part of

oT it
i) Qe

2
0z |, mr?

H(ro = 1), (7)

where H(r, —r) is the step function and Q is the am-
plitude. The temperature is taken as the real part of the
form

T(r,z,t) = ei”"U(r, z). (8)

Combining (6) and (8) the time dependence is removed
so that U(r,z) satisfies the reduced heat flow equation

*PU 10U *U
et ="y ©)

where
mo=—. (10)

To proceed further it is convenient to: (i) remove the
radial dependence by the use of a Hankel transform; (ii)
solve the resulting ordinary differential equations to get
the solution in the transformed space; and (iii) use the
Hankel inversion to recover the radial dependence. The
Hankel transform and its inverse are defined in standard
texts, see for instance [14]:

U(ﬁ,z) = /OQ U(r,z)rJo(pr)dr,
T (11)
U(r,2) = /ﬁ T(B,2) B (pr) df,

=0

where Jy(fr) is a Bessel function of the first kind with
order zero. For brevity the transformed quantity U(f, z)

is written as U. Using the properties of the Hankel
transform the reduced heat equation (9) is transformed
to the ordinary differential equation d*U/dz* — 72U = 0
where

y =B+ . (12)

The solution to the differential equation has the form
U = Ae”” + Be™” where the coefficients 4 and B are
discontinuous on either side of the crack.

3.2. Cell transition matrix

The region 0 < z < a/2 is considered here as the “—"
side of the cell. The transformed temperature is denoted
by U_(z) and its derivative V_ = dU_/dz are given by

U_(z) = 4, exp(yz) + By exp(—yz),
V_(z) = 74, exp(yz) — 7By exp(—yz).

The coefficients 4; and B; are then found in terms of
U(0) and 7(0)

=— = ) 1
= ) (13
Similarly, on the “+” side of the crack, in the region
a/l2<z<a,

U.(z) = 4y exp(yz) + By exp(—7z),

Vi(2) = yA2exp(yz) — B exp(—yz),

so that transformed quantities are related to the coef-
ficients by

{Ff = (o S i) (9
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The crack is located at z=a/2 and the two boundary
conditions across the crack are given by

V (af2) =V (a/2) = = {Ts(a/2) =T (af2)}.  (15)

These two conditions lead to

peay  _ peaye™™
B0 D
B, peayel 1 _ e B J

2 2

Combining Egs. (13), (14) and (16) it follows after
matrix multiplication that

{g(”)} _ ( ¢ 7/771){§(0)}7 (17)
V(a) oy ¢ V(0)

where the matrix terms are given by

{ =coshay+ % sinh ay,

n =sinhay+pczay (coshay + 1), (18)
0 = sinhay + pczay (coshay —1).

The 2 x 2 square matrix in (17) is the cell transition
matrix. It is convenient to designate this matrix by  so
that (17) can be written in an abbreviated notation as
wy = ¥wy where wy and w; represent the column vectors
in (17) and the subscripts represent the positions of the
cell boundaries.

3.3. Cascading the cell transition matrices

Repetition of the same calculation on the second cell
gives the thermal response at z=2a by the form
wy = 6w, = %*wy. By further cascading the matrices,
the thermal response at z = na becomes

Wy, = (gnWO. (19)

Clearly it is useful to find an expression for the matrix ¢
raised to integer powers. To begin this process the ei-
genvalues of % are found. It can be verified that
det% = ¢ — 0 = 1 and therefore the product of the two
eigenvalues, say u, and p,, must equal unity, ie.,
w1, = 1. The characteristic equation to find the eigen-
values is thus given by p? — 2{u+ 1 = 0 so that

p=p =01,

1
= =_{- §2*1~
u

(20)

The two eigenvectors corresponding to p; and u, have
the components (k;,1) and (x,, 1) so that the standard
equations can be written as

(C '1"/71><K1 K2>:(K1 KZ)(.“I 0)
oy (¢ 1 1 1 1 0 w)

Using (20) along with > —1=p50 it is found that
Ky = —Ky = 1/y4/n/0. The matrix % can then be ex-
pressed as

C 1’]"/71 _ K1 —Kp Uy 0 K1 —Kjp -
0y 1 1 0 w 1 1
or, in abbreviated notation, ¥ = x u x~'. In this form it
is clear that
G =(ux Nru™) - (cpr) =kt kTl
Since u is a diagonal matrix the quantity u” is readily
evaluated. It then follows that

o [ Y
g_(ﬁv C)

1 W+ n/0(uw — 15)/7
== . (21)
0/n(ui — 15)y 1+
This is the desired result for the transition matrix raised
to the integer power 7.

3.4. Boundary conditions at z = 0 and z = o

Based on physical grounds it is clear that at a suf-
ficiently large distance from the source both the tem-
perature and flux die off so that U(na) and V(na) must
tend toward zero as n — oo. The eigenvalues are given in
(20) and p; > 1, u, < 1. Using Eq. (21) in (19), the
transformed temperature U(na) can be found, and,
when n > 1, is

U(na) ~%7{U(0) 4 ﬁ@ }

If U(na) is to vanish, the temperature and its derivative
at z = 0, must be related by

U(0) = — %V(o» (22)

where

v=1/n/6. (23)

If T(0) and V(0) are not related in this way the tem-
perature becomes infinite at large distances from the
source. The heat input on the plane z = 0 is through a
point (the circular area 772 in (7) is shrunk to a point),
and taking the Hankel transform of (7) leads to an ex-
pression for 7(0). Using this in conjunction with (22)
gives

{g((g)) } :%{v—/{} (24)

The transformed quantities at positions z = na are thus
found by using (24) in (19)
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+ Ov _
Ulna) = = ~ "
(na) Tl
= o
Vina) = =500

Finally, taking the inverse transform of U(na), the
temperature is found

_Qeiu)l oy .
roona) =S [ Swanpa, 23)

where z = na. This integral represents the exact solution.

3.5. Temperature along the z axis

The temperature along the z axis is of special interest.
At positions z = na the complex temperature is given by

08 <, Bdp

The point z = 0 coincides with the source so that the
temperature 7(0) = co and the condition n > 1 is re-
quired for convergence. The nth cell is bounded by
(n— 1)a < z < na and the thermal decrement across this
cell is given by the ratio

T(n=1) _ Jo " "B/rdp ‘
W fweppap - Pk CD

where the real part i, gives the attenuation rate and the
imaginary part ¢, gives the phase lag. The extra phase
lag across the nth cell is thus given by

X(n) =, —p. (28)

The extra lag X (n) depends on n =z/a and requires
numerical evaluation.

To approximate these integrals, it is noted that the
quantity u™" = exp{—nlIn pu} where |1/u| is a decreasing
function of . For large values of n the integral is
dominated by the behaviour near § = 0 so that it is then
possible to use the Laplace type approximation [15] to
evaluate the integral. In this method the integrand is
expanded as a Taylor’s series around f# = 0, so that

vu"B  vexp{—nlnpu} 5

Y m2+ﬂ2
. vo+vp---
~ i exp(mu ) )
m(1+45)

where Inp~Iny,+pf--- and vavy+wvpf--- rep-
resent the expansions around f§ = 0. Using these in (26)
and retaining only the first order terms in f yields the
result

Qeiwt B /ao B Qeiwt Vo ”—n
T ~ n e npy B d — (] .
(n) 2rtkm M0 0 pdp 2mkm @3 n?

Thus as n — oo , the ratio T(n — 1)/T(n) approaches a
constant value which is given by

e ven+id) ==t \G -1 (9

where the subscript “0” means that {, = {(f = 0). Using
(18) it follows that

{y = cosh{am} + % {am} sinh{am}. (30)

Using the standard identity In(x + vx> — 1) = cosh™' x,
it is found that

W +1i¢ =Inp = cosh™ ¢,
=cosh™ [cosh{am} + % {am} sinh{am}} . (31)

The extra lag due to the presence of the crack ap-
proaches the limiting value given by

X=¢-p (32)

This represents the asymptotic behaviour as the wave
“flattens out”. In other words, as the radius of curvature
of the wave front becomes large in comparison with the
crack spacing the thermal decrement across each cell
becomes independent of n.

Fig. 2 shows a graph of X(2), X(6) and X versus p for
various values of p, ranging from 1/8 to 256. The values
X (2) and X (6) were obtained by numerical evaluation of
the integrals in (27). (The results for the cells n =3...5
were not shown to prevent clutter in the figure.) It is
clear that X(6) almost coincides with X over the entire
frequency range. Considering the lag X, note the fol-
lowing features:

2

Extra Lag, X
a
I

Normalized frequency, p

Fig. 2. Plot of X(2), X(6) and X versus p for values of
1/8 < p, < 256.
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1. an initial linear portion, labelled “a”, with slope
{V/1+ p. — 1}, in agreement with (5);

2. the occurrence of a maximum for large values of p,
shown at the labelled point “b” on the curve corre-
sponding to p, = 256;

3. as p becomes large, X — n/4, corresponding to
point “c’’;

4. for low values of p, the extra lag X shows no maxi-
mum value and all the results for X (n) coalesce onto
a single curve.

The slope in region “a’”” and the maximum point ‘b’ are

low frequency phenomena and are discussed in Section

4. The latter two phenomena are discussed in Section 5

with regard to the non-interacting model.

4. Low frequency behaviour

In this section, a simplified model for the low fre-
quency behaviour is developed. If the crack spacing is
sufficiently small, then it becomes reasonable to neglect
the temperature variation in the z direction within the
slab of solid residing between the cracks. Referring to
Fig. 1(a), the nth slab is centered at z = na and it oc-
cupies the region na —a/2 <z <na+a/2. The tem-
perature 7, in the nth slab depends only upon r and is
independent of z. The validity of this approximation of
course depends upon the phase lag p and in this context
1/p? is equal to the Fourier number for the cell. It is well
known in the theory of heat conduction that to attain
steady state requires large values for the Fourier
number. Therefore if the z variation of temperature
within the slabs is to be small then p < 1. In effect, the
treatment is identical to the assumptions underlying the
finite difference scheme where the mesh spacing Az is set
equal to the distance between cracks.

The thermal resistance of an area 4 across a unit cell
is Ry = a/Ak + 1/4h, so that k. is given by (2). There-
fore, the heat outflow per area from the nth slab to its
two neighbours is AQ, = —k.(T,41 — 2T, + T,41)/a and
including the radial flow a heat balance leads to

T, 107, kZ{TnH—ZT,ﬁ-Tn,l}ilaTn

ot T ror |k 2 o ot

(33)

a

As a — 0 this second order difference equation tends to
the heat flow equation for an anisotropic solid. The nth
slab is centered at z = na and the source is in the zeroth
slab so that the flux boundary condition on z =0,
similar to (7), is expressed by the forward difference
formula

s H(ro — 7). (34)

kz
“inony=
a{o 1}

Near the source the temperature gradients are very large
and the finite difference approximation is not particu-

larly accurate. To eliminate the temporal component the
temperature is written in the form

T, = Uy(r), (35)

where U, (r) is a function of r. Using this form for 7, in
(33) yields

o*U, 10U,
2 n L n
(1+pc)a{ or? +r or

=2i(1 + p.)n*U,. (36)

} + {Un+1 - 2Un + Unfl}

Taking the Hankel transform, given in (11), of this re-
duced heat equation gives the difference equation

Un+l - ZUn + Un—l = az}'z(l + pc)Um (37)

where U, is the transform of U, and y* = m* 4+ 8> has
been previously defined in (12). The solution to differ-
ence equations of this type are given in standard books,
see for example [16], and in this case the solution has the
form U, = Be™. Using this in (37) after some algebra
leads to

I
¢ = 2sinh! {%} (38)

The transform of the boundary condition (34) is
Uy — U, = Qa/2nk. and this is used to find the constant
B so that U, is given by

o _ Qa e*ﬂf
Ulh) = s T—e

Finally, application of the inverse Hankel transform (11)
gives the temperature as

7Qaei‘“’ o a—ne
" ="2nk. /0 o /olPrIBdp. (39)

4.1. Temperature along the z axis

Along the centerline it is possible to evaluate the in-
tegral in (39) by changing the variable of integration
from f to e Using (38) it follows that

y= Z/m2 + % = 2sinh(e/2)/ay/T + p. and by the use of

standard hyperbolic trigonometric identities
ycoshe/2de  sinhede

pap = LEohe2de

T @tp)

The lower limit of integration § = 0 corresponds to ¢,
which is given by

€ = 2sinh™! {p i0+p) ;’”J}. (40)

The upper limit § = oo corresponds to € = co and the
integral given in (39) reduces to the simple form
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Qeiwt 00

"~ dnak “

e fe" + 1} de. (41)

As before, considering the behaviour when n > 1, the
integral is dominated by its behaviour near the lower
limit ¢, so that the ratio

n

T

= exp {Y, +i¢.} ~exp{e}

= exp {2sinh1 {p W}},

where the subscript ¢ indicates “low” frequency. The
phase lag ¢, is then given by

W, +i¢p, = 2sinh ! {p W} (42)

where the phase lag ¢, is the imaginary portion of the
inverse hyperbolic sine on the right-hand side. The extra
lag according to the low frequency model is then given
by

Xo = ¢y — by (43)

Fig. 3 shows a comparison between the exact value X
given in (32) and X, for various values of p,. For values
of frequency

1
- 44
P<3 (44)

the low frequency model is in fairly good agreement with
the exact result. Note two features: (i) the linear region

2T

—— Exact solution

— — Low frequency model
—— p=1/3

- Location of maxima

/4

Extra Lag, X

T T
0 1 2 3

Normalized Frequency, p

Fig. 3. Comparison of the low frequency model with the exact
solution. For values p < 1/3, the low frequency model is in
reasonable agree with the exact result. The approximate locus
of maximum values is given by the line X,, = n/2 — 3p/2.

[IPET)

a” near p = 0; and (ii) the existence of maxima for the
curves where p, > 1. These features are discussed be-
low.

4.2. Transition to the equivalent solid

It is possible to establish an upper bound for p under
which the equivalent solid model is valid. This situation
corresponds to the case where the crack spacing “a” is
made small enough, so that the difference equation given
in (33) can be replaced by a partial differential equation
which governs the thermal response of an equivalent
anisotropic solid.

To begin, it is noted that for small values of x the
inverse hyperbolic sine is given by
sinh™'x ~ x — x3/6 + - and therefore, considering (42)
for small values of py/1+ p, the inverse hyperbolic
function can be approximated by the first term of its
Taylor series. If py/1 + p, is limited to values less than
1/3 then ¢, ~ p\/1 + p. < 1/3. Since ¢, = p, it follows
that ¢, = X; + p and then

1

X +p< 3 (45)

his represents the regime in (p,X) space where the
equivalent solid model is valid.

4.3. Maximum value of X,

Even for small values of p it is possible that the value
of p, is sufficiently large so that /T + pp > V2. For
large values of its argument the Taylor series expansion
of the inverse hyperbolic sine has the form
2sinh ™' x ~ In4x? + 1/2x> — - - .. The expression in (42)
is then approximated by

. L i(1
¥, +ip, = 2sinh l{p @}
i

~In{2ip’(1 +p.)} YD)

and ¢, is given by the imaginary part of the right-hand
side. The extra lag is then given by

n 1
X~ —p. (46)
2 (I+p)p
The derivative of X; with respect to p is designated X
and the maximum value X,, corresponds to X; = 0. This
occurs when

i)

The maximum value X,, is found by using this value of p
in (46) to obtain
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n 27 173 n—3p
R ETE] B )

The line X,, = n/2 — 1.5p is shown in Fig. 3 and, for
values of p, > 8, it gives reasonable estimates for the
maxima. [t is also clear that the maximum possible extra
lag is always less than n/2.

5. Non-interacting cracks

As the thermal wave propagates through the solid, a
portion of the wave is reflected at each crack while the
remaining portion is transmitted. The reflected portion
is subsequently back-reflected from neighbouring cracks
thereby causing thermal interaction between cracks.
This interaction becomes small if either: (i) the cracks
are highly conductive so that p, < 1 or, (i) if the fre-
quency is high enough so that p > 1. In the former case
the perturbation to the thermal field is slight since the
reflected portion is negligible. In the latter case the re-
flected portion attenuates so that the interaction is
minimal. In many situations described in the literature
the scattering obstacles are finite obstacles such as
spheres or cylinders and it is often a reasonable ap-
proximation to neglect the secondary scattering [18,19]
and accordingly the analysis simplifies. This situation is
analogous to the mechanical stiffening of composites by
second phase particles [17]. If the particles have ap-
proximately the same stiffness as the matrix then the
interaction between them is small. Alternatively, in a
dilute solution the particles are widely separated and
regardless of their stiffness the interaction between them
can neglected.

The object here is to develop an approximate model
that simplifies the mathematics by neglecting the sec-
ondary scattering between cracks. To begin, consider the
exact expression for the temperature which is given in
(25) for values of z = na

iwt

Bdp
2mk '

/Cajvu*"Jb<ﬂr>444— (49)

T(r,z,t) =
y

The interaction is small either at sufficiently high fre-
quency so that |am| = v2p > 1, or if the cracks offer
little resistance, so that p /2 < 1. These two conditions
can be described mathematically by the inequality

2
p+p—>>1. (50)

C

If (50) holds true and given that (= cosh{ay}+
(p./2){ay} sinh{ay}, it follows that the expression for
the eigenvalue simplifies to

e CfC -1 (14555,

The parameter v given in (23) approaches unity and
upon defining o = 2/ap, = 2h./k, the integral in (49)
reduces to

pdp

} e “Jy(Br) 5 (51)

iwt %)
rean =5 [ {5

2nk $=0 g+ Y

Along the z axis, the temperature can be evaluated an-

alytically in terms of the complementary gamma func-

tion I'(¢,Z)
Qeiu)t e%?

=5 7(0‘2) I'(1 —n,zm+ zo),

T(n)

where the complementary gamma function has the
asymptotic behaviour

0 A
I'(c,Z) = / et ldi~v S as 7 — .
7 z

Using the expression for o, it follows that
|z(o +m)| = n{2/p. + p}. In view of (50), the gamma
function can be represented by its asymptotic form so
that the temperature is given by

Qeimt ez o n
T~ 5 . (52)

z g+m

To find the lag across the nth cell it is necessary to
consider the temperature ratio

% =exp{y, +i¢,} = {n%l}e‘""{l +%am}.

The extra lag due to the crack is equal to the argument
of (14 p.am/2)

p
X, =arctan< ————— (53)
{p+ (2/pc)}
where the subscript “i” indicates isolated or indepen-
dent.

To obtain the range of validity for the non-interact-
ing model suppose that the right-hand side of (50) is set
equal to some value greater than unity. In fact, as dis-
cussed immediately below, using p + 2/p, = 3 leads to a
reasonable estimate for the wvalidity range. Using
this inequality in (53) it follows after some elementary
algebra that

p>3tank,. (54)

Fig. 4 shows X; versus p for various values of p, and as
before the exact results obtained from (32) are also
shown. The suggested validity range (54) gives the region
in (p,X) space where the non-interacting model is valid.
Note that if the crack conductance is low, i.e., p, < 2/3
(approximately), the non-interacting model is valid for
all values of p.

As a final point, it is noted that at sufficiently high
frequencies, the extra lag X; — n/4, corresponding to
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—— Exact solution
—e— p=3tanX
1 — — Non-interacting model F
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>z 1/8
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Normalized Frequency, p

Fig. 4. Comparison of the non-interacting model with the exact
solution. For p > 3 tan.;, the non-interacting model is in good
agreement with the exact model. The non-interacting model is
universally valid when p, < 2/3.

point “c” on Fig. 4. This can be rationalized in the
following way. Since there is no interaction between
cracks it is reasonable to consider an isolated crack that
is positioned at z = 0. Let 7_(z) and T (z) represent the
temperatures in the regions z < 0 and z > 0, respectively,
and suppose that the periodic source is located some-
where in the region z < 0. The jump condition across the
crack is given by

k 0T,

Tf:T+_h oz’

where 7_ and 7, are the temperatures on either side of
the crack. At high frequencies the magnitude of
m = y/io/ou becomes large so that the derivative,
0T, /0z ~ —mT,, where the negative sign accounts for
the fact that 7', decays as z increases. It then follows that
T_ =~ {1+ mk/h}T,. Eventually as the frequency is in-
creased the magnitude of mk/h. becomes large in com-
parison with unity and T ~ {mk/h.}T.. Since the phase
angle of m is equal to n/4 it follows that 7, lags 7 by
this amount. In other words, there is a limiting phase lag
of m/4 across the crack at high frequency. This discon-
tinuity is not predicted by the equivalent solid model.

6. Regimes of validity for the simplified models

The extra lag X (n) across a unit cell which is caused
by the presence of the crack has been the focus of at-
tention. As n increases, X (n) rapidly approaches the
limiting value X, and becomes X (n) virtually indepen-

dent of n when z > 5a. This is the regime of interest in
the corresponding experimental study [7]. In this latter
regime (z > 5a), the thermal response of the cracked
body exhibits a variety of behaviors dependent on the
normalized frequency p and the normalized crack re-
sistance p,. The exact solution for X'is fairly complicated
and simplified asymptotic models have been obtained to
predict X. Their validity regimes have been established
through comparisons with the exact numerical results.

At very low frequencies, the behaviour of the cracked
solid is the same as that of an equivalent homogeneous
anisotropic solid with the thermal conductivity tensor k;;
given in (3). Along the z axis, X ~ X, and varies linearly
with p with a proportionality constant /1 + p, — 1. The
validity range for X, is p + X < 1/3 as given in (45). The
equivalent solid model is a subset of the low frequency
model which is valid over a wider frequency range,
p < 1/3, as given in (44). The phase lag X, exhibits non-
linearity at higher frequencies and, for high values of
p.(> 1), attains a maximum value that is always less
than n/2.

The mathematical analysis becomes more straight-
forward if the secondary scattering is neglected. The
extra lag X; given in (53) is the prediction of the non-
interacting model and the conditions where this model is
reasonable have been discussed in Section 4. It has been
shown in Fig. 4 that setting p+ p./2 >3 gives a
reasonable estimate for the validity range and this
validity regime can be equivalently expressed in (p,X)
space by the inequality (54).

The regimes in (p,X) space in which the various
models for X are valid are plotted in Fig. 5. The figure
illustrates that the equivalent solid model (valid in the
region denoted Ocef0) is a subset of the low-frequency

| Low Frequency

o
Y

1 Non-Interacting

Extra phase lag, X

0.01 0.1 1 3
Normalized frequency, p = a(nf/o)"?

Fig. 5. Map showing the regimes of validity for the various
models for X.
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model (Ocdg0). Furthermore, the non-interacting model
is valid for a large portion of the high frequency regime
and overlaps with the low frequency model in acea. The
figure also shows that the exact numerical solution is
only required in the region ebdb, defined by p > 1/3
and p < 3tanX. The heavy line, gdb, gives the upper
limit for the maximum possible extra lag due to the
crack.

7. Application to experimental results

The aim of this section is to show how this calcula-
tion can be used to determine the value of p, from ex-
perimental measurements. The experiments are
performed by focusing a sinusoidally-modulated laser
onto the surface of the sample, and, apart from the heat
input due to the laser, the incident surface can be con-
sidered to be adiabatic. The preceding theoretical anal-
ysis gives the thermal response, caused by a point
source, in an infinite solid containing a periodic array of
cracks, and, provided that the thermal interactions from
the other specimen surfaces are negligible, this analysis is
applicable to the experiment. The effect of the other
adiabatic specimen surfaces can sometimes, depending
upon the symmetry of the specimen with respect to the
cracks, be accounted for by the use of “image sources”;
this effect is not considered here.

The thermal diffusivity, «, of the pristine material can
be found by standard phase lag measurement, and o is
regarded as a known quantity. After the cracks have
been introduced, the laser is focused onto the specimen
surface as shown in the inset of Fig. 6. The r,z axes are
shown where the z axis is perpendicular to the cracks,
and the phase lag @ is measured over a distance,
Az = z; — z;, which spans N cracks. A set of experi-
mental data points, @ and P = Azy/nf/a, can thus be
obtained. As previously discussed, when the distance z;
becomes greater than about five times the crack spacing,
the phase lag across each cell becomes uniform, and, for
the sake of comparison with the results of Fig. 5, it is
more useful to convert the points (P,®) into
(p,¢) = (P, ®)/N. The regimes in which the various
models are valid are shown in Fig. 6. The lower limit, ¢,,
corresponds to p, =0, and the line gdb represents the
upper limit corresponding to p. = oco. All phase lag
measurements must fall between these limits. The vari-
ous regions are: (i) the equivalent solid model, which is
bounded by X +p=¢ — ¢, +p = ¢ < 1/3, and is valid
in the region Ocf0 that is labelled “E”; (ii) the low fre-
quency model, which is bounded by p < 1/3, and is valid
in region OcedgfO that is labelled “Low”; and (iii) the
non-interacting model, which is valid in region Ochae0,
and is bounded by p > 3tanX =3tan(¢ —p). The
dashed lines, showing ¢ versus p, are for the values of p,
given in the figure caption.

Phase Lag, ¢

Normalized frequency, p

Fig. 6. Plot of ¢ versus p showing the regions where the various
models are valid. The inset schematically illustrates the location
of the source, the r,z axes, and the points z|, z,. The dashed
lines show the behaviour of ¢ for values of p. = 0.1, 1, 10, 100
and 1000. The line gdb corresponds to p, = oo, and point g
represents ¢ = n/2.

Consider a set of experimental points (P, ®), ob-
tained from a specimen having an unknown value of p,.
These points can be plotted on Fig. 6 by the transfor-
mation (p,$) = (P/N,®/N), and the aim is to find the
value of p, so that the calculated points (p, ¢) fit the
experimental data. The experimental data points that
are in region E are the most simple to analyze; they fall
on the line

¢ mpﬂ- (55)

The determination of p, from the experimental results
then reduces to a straightforward linear fitting proce-
dure. There are some experimental disadvantages to
doing the measurements at very low frequencies: (i) the
time taken to attain the steady-periodic state is long; (ii)
a very small phase lag can be difficult to measure, and
(iii) the rate of thermal attenuation becomes small, and,
depending upon the specimen dimensions, the effect of
the “reflections” off the boundaries can become signifi-
cant. From an experimental viewpoint the situation can
be somewhat ameliorated by considering the higher
frequency data points, i.e., p > 1/3. If the crack re-
sistance is not too large, say p, < 1, then the non-
interacting model becomes useful, and the expression for
the phase lag is

¢zp+arctan{pzci2}. (56)
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This expression can be used to deduce p, from the ex-
perimental measurements. In fact, as previously dis-
cussed, when p, < 2/3 this expression for ¢ is valid at all
frequencies. Moreover, when p.p < 1, both Egs. (55)
and (56) give ¢ ~ (1 + p./2)p. In contrast, if the crack
resistance is large, p, > 1, then the exact solution is re-
quired. Furthermore, as shown in the figure, for values
of p. =10, 100 and 1000, the phase lag measurements
tend to “run” together, approaching the line db, as p
becomes large. Consequently, high frequency measure-
ments are not useful for the determination of crack
conductance when p, is large.

In summary, it is clear that low frequency measure-
ments made in the equivalent solid regime are the most
straightforward to interpret. However, from an exper-
imental viewpoint, it is sometimes preferable to make the
measurements at higher frequency to eliminate thermal
interaction due to the finite size of the specimen. If p, < 1
then Eq. (56) gives a fairly simple relationship between ¢,
p. and p, which can be used to extract the crack resistance
p. from a set of experimental measurements.

8. Concluding remarks

The analysis presented here is based on the assump-
tion that the cracked solid has a structural periodicity in
the z direction. The formation of the cell transition
matrix requires a knowledge of the thermal properties of
the pristine solid, plus the interface resistance, p,.
Although attention has been focused solely on the
specific case where the heat input is periodic in time,
other types of heat input can also be treated by using the
same type of analysis, wherein, the cell transition
matrices are cascaded. The application of the time-
periodic analysis, to extract the crack resistance p, from
experimental phase lag measurements, has been a
motivation for this work.
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